Feb. 4, 2020

Measurements of few-mode fiber photonic lanterns in emulated atmospheric conditions for a low earth orbit space to ground optical communication receiver application

Sarah A. Tedder, Yousef K. Chahine, Brian E. Vyhnalek

NASA Glenn Research Center

Bertram Floyd

Hx5 Sierra

Benjamin Croop

The University of Central Florida

Sergio Leon-Saval, Chris Betters

The University of Sydney

Introduction

- NASA GRC is developing a low cost scalable photon counting optical ground receiver that includes:
 - Fiber optic devices to deliver light to detectors
 - Commercial of the shelf single photon counting detectors
 - Real time FPGA-based receiver compliant with CCSDS HPE Standard

Fiber/Detector architectures under evaluation

- Focus of this study
 - Fiber devices
 - Evaluate main purpose: efficiently deliver light to detectors
 - > Measured power throughput efficiency
 - > Coupling loss to detector <u>NOT</u> included
 - Case study of emulated atmospheric conditions:
 - > Low earth orbit
 - > 60 cm receiver telescope aperture
 - > Range of turbulence levels:
 - $(r_0 = 7-50 \text{ cm} \rightarrow D/r0 = 1.2-8.6)$

Creation of emulated atmospheric conditions

Simulation

Emulation

Incoming wavefront

Simulated Intensity

Phase Hologram

Emulated intensity

- Optical turbulence is modeled with phase screens distributed based on the Hufnagel-Valley turbulence strength profile.
- Simulation model verified.
- **Details in:** Chahine et al, "Beam propagation through atmospheric turbulence using an altitude-dependent structure profile with non-uniformly distributed phase screens", **Tuesday poster session.**

- Complex amplitude phase hologram created from simulated wavefront.
- Hologram applied to beam with spatial light modulator generates emulated wavefront.
- Emulation accuracy not fully verified
- Results preliminary

Fiber devices tested

Fiber Device	Core Size,	# of modes
	μm	supported
Graded Index Multi-Mode Fiber	30	15
7:1 Single-mode fiber lantern	30	7
7:1 Few-mode fiber lantern	55	41

- Power throughput efficiency of fiber devices depends on number of supported modes
 - Light arriving to the telescope is multi-moded
 - Energy scattered into higher-order modes
- Standard photonic lanterns (single-mode fiber)
 - 1:1 output leg to mode ratio. Ex: 7 legs → 7 modes
- New few-mode fiber lanterns:
 - Increase modes supported by each output leg
 - Enables higher number of modes with same number of detectors. Ex: 7 legs → 42 modes

7:1 Few-Mode Fiber Photonic Lantern

Experimental setup for coupling efficiency

Test setup measures efficiency of lanterns and fibers over a range of input numerical apertures and emulated turbulences levels.

FMF Lantern coupling loss over a range of input numerical apertures at a few emulated D/r₀'s

The input NA at which the FMF lantern minimum coupling loss occurs depends on the emulated D/r_0 . This indicates a fixed optical design wouldn't be ideal for a FMF Lantern.

Best input numerical aperture for minimum coupling loss versus D/r₀

The GI-MMF's best coupling NA is independent of D/r_0 . The lanterns' best NA is dependent on D/r_0 .

Coupling loss at emulated D/r₀'s (at best input NAs)

D/r_0	Gain Relative	Loss Relative	
	to the SMF	to the GI-MMF	
	Lantern (dB)	(dB)	
8.6	3.92	0.86	
4.0	2.10	1.83	
2.0	2.25	0.66	
1.2	2.07	0.69	
0	1.17	0.53	

Results shown at each devices' NA with minimum coupling loss. FMF lantern coupling losses: between SMF lantern and GI-MMF.

Conclusion

- A preliminary case study of a 60 cm diameter telescope receiving light from low earth orbit was performed for two types of lanterns and a GI-MMF.
- Best input NA

 Lanterns are dependent on the atmospheric condition.
- Emulated turbulence →
 - FMF lantern had increased coupling efficiency over SMF lantern
 - FMF lantern have slightly less coupling efficiency than a 30 micron GI-MMF.
- Future Work on FMF lanterns
 - Study dependence on input NA
 - Refine design and fabrication process to reduce losses.
 - Perform system-level comparison to GI-MMF with corresponding detectors

Acknowledgements

This work was funded by the Space Communication and Navigation Program and the University of Sydney.

email: sarah.a.tedder@nasa.gov